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1 Introduction

Even though QCD yields a remarkably good description of the strong interaction, the low
energy hadron physics has to be modelled phenomenologically. This is due to the fact that
the usual perturbative approach in the coupling constant cannot be applied to QCD below
energies of the order of 1 GeV. Most of the phenomenological results were based on PCAC
and Current Algebra. However, in 1979, Weinberg [1] showed how to reobtain many of these
predictions by means of an effective lagrangian.

The fields in that lagrangian are the light mesons, (pions, kaons and etas) which are
understood as the Goldstone Bosons (GB) arising from the spontaneous breaking of chiral
symmetry. The lagrangian is built as an expansion in derivatives, that respects the symmetry
breaking pattern of QCD. Indeed, the first term in the expansion is fixed by the symmetry
requirements and accounts for the Current Algebra results. The next terms in the expansion
produce further corrections, which depend on several phenomenological parameters but are
always consistent with the QCD symmetry constraints. These techniques were later devel-
oped to one loop in a set of papers by Gasser and Leutwyler [2, 3]. They showed how to
obtain amplitudes involving light mesons, as functions of their momenta, their masses and
those few phenomenological parameters.

By fitting these parameters from a few low energy experiments it is then possible to
obtain successful predictions for other processes. The whole approach is known as Chiral
Perturbation Theory (ChPT).

Very recently some partial higher order calculations [4] have appeared in the literature
as well as a complete two loop calculation of ππ scattering [5], which will be needed in order
to analyze new data to come from DAΦNE and Brookhaven. For a general review of the
available experimental data on pion physics and future prospects, we refer the reader to [6].

Nevertheless, there are some intrinsic limitations when applying ChPT, namely, the fact
that the amplitudes calculated within the chiral approach are only unitary in the perturbative
sense, that is, up to the next order in the external momenta. Such a breakdown of unitarity
is most severe at high energies, where the external momenta is no longer a good expansion
parameter, although it can also occur at moderate energies [7]. As a result, it is not possible
to reproduce resonant states, which are one of the most characteristic features of the strongly
interacting regime. Many different methods have been proposed in order to improve this
behavior and thus to extend the applicability of ChPT to higher energies; among them: The
use of Padé approximants [8], the explicit introduction of resonances [9, 10], the K-matrix
[11], the large N limit [12] (N being the number of GB) or the inverse amplitude method
(IAM) [7, 8, 13, 14].

This work is devoted precisely to the last method, which can be justified within a disper-
sive approach and can easily reproduce the two lightest resonances: the ρ(770) in ππ scat-
tering [8] and the K∗(892) in πK scattering [13]. But not only that, the IAM also improves
considerably the fit to data even in non-resonant channels, almost up to the first two particle
inelastic threshold (The many particle inelastic thresholds can be neglected since they are
suppressed by phase space factors). This fit provides a remarkably good parametrization
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that can be used for other processes. Indeed, in a previous work [15], the authors showed
how it can be used together with a simple unitarization prescription to obtain successful
results on γγ → π0π0 up to 700 MeV.

Of course, it is also possible to obtain very good parametrizations [9, 10] of ππ or πK
elastic scattering by including all resonant states explicitly. However, our aim choosing
the IAM is to reproduce these phenomena just with the few phenomenological parameters
present in the ChPT lagrangian. In this way, even though their masses and widths will not
be obtained with great accuracy, resonances can be regarded as real predictions. That is one
of the relevant features of the IAM since other very popular unitarization methods are not
able to reproduce resonances unless they are explicitly introduced in the calculation. That
is, for instance, the case with the K-matrix.

The purpose of this work is, first, to study how high in energies the IAM yields good
results and what are its limitations. We would also like to know whether it is possible
to reproduce further resonance states. It is clear that the best candidates are the lightest
resonances whose dominant decay modes are ππ or πK. We have listed them in Table 1. In
case these resonances were not accommodated after our unitarization, it would be interesting
to understand why. Second, once we have a good fit to these resonances, we want to make
a complete numerical analysis of several low-energy quantities of interest, like the chiral
parameters or the scattering lengths, including estimations for their errors. As we will see
below, we expect that the IAM somehow will include effects that cannot be obtained from
the pure p2 expansion.

Name I,J Mass Width Dominant decays

ρ(770) 1,1 768.8 ± 1.0 150.3 ± 1.0 ππ, 100%
ππ, (78.1 ±2.4)%

f0(980) 0,0 980 ± 10 40 to 400
KK̄, (21.9 ± 2.4)%

f2(1270) 0,2 1275 ± 5 185 ± 20 ππ, (84.7 ±2.6)%

K∗(892)± 1/2,1 891.59 ± 0.24 49.8 ± 0.8
K∗(892)0 1/2,1 896.10 ± 0.28 50.5 ± 0.6

πK, ≃ 100%

Table 1: Lightest resonances with ππ or πK dominant decay modes. Data taken from [16].

Finally, we would like to comment on another motivation of the present work, which at
first may not seem very related to the main topic. The philosophy of the chiral approach has
also reached the description of the strongly interacting symmetry breaking sector (SISBS)
of the Standard Model [17]. The scalar sector of such a model displays the same symmetry
breaking pattern as two flavor massless QCD. Hence it is possible to build an effective
lagrangian, much as it is done for ChPT [18]. Although the electroweak GB are not physical,
using this lagrangian it is possible to obtain predictions for the scattering of longitudinal
gauge bosons [19] at future colliders, like the LHC. Indeed, there are already experimental
proposals to measure the electroweak chiral parameters at CMS [20]. Most of the works on
the SISBS make use of the Equivalence Theorem [17], which allows us to read the observable
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amplitudes, in terms of longitudinal gauge bosons, directly from those with GB. This theorem
has been recently proved in the chiral lagrangian formalism [21] and seems to be severely
constrained by the lack of unitarity. At this point is when the unitarization procedures come
into play and it is crucial to know whether they are reliable, since what we are now looking
for are real predictions and not elaborated fits to still unavailable data.

In Section 2 we review some basic aspects of exact and perturbative unitarity and we
define the partial waves in elastic scattering. Section 3 introduces the IAM, first with a
derivation from Dispersion Theory and then by studying the constraints to its applicability.
Section 4 and Section 5 are organized in the same way, although they refer to SU(2) and
SU(3) ChPT, respectively: First we apply the IAM to ChPT with the chiral parameters
obtained from low energy experiments in order to study the IAM predictive power. Next,
we present an IAM fit to the data. For the best SU(3) fit we present the unitarized results
for the scattering lengths and some other phenomenological parameters. Then, in Section 6,
we study the analytic structure on the complex plane of the IAM amplitudes. In Section 7
we present the conclusions. There is also an Appendix where we give the elastic scattering
formulae used in this work, as well as a discussion on perturbative unitarity.

2 Partial waves, phase shifts and unitarity.

When dealing with strong interactions, it is usual to project the amplitudes in partial waves
with definite angular momentum J and isospin I, as follows

tIJ(s) =
1

32Kπ

∫ 1

−1
d(cos θ)PJ(cos θ)TI(s, t) (1)

where K = 2 or 1 depending on whether the particles in the process are identical or not.
The acceptable isospin values also depend on the process, namely I = 0, 1, 2 for ππ elastic
scattering and I = 1/2, 3/2 for πK. For both reactions the definite isospin amplitudes TI

are obtained from a single function. In the first case

T0(s, t, u) = 3A(s, t, u) + A(t, s, u) + A(u, t, s)

T1(s, t, u) = A(t, s, u) − A(u, t, s)

T2(s, t, u) = A(t, s, u) + A(u, t, s) (2)

whereas for πK scattering we can write

T1/2(s, t, u) =
3

2
T3/2(u, t, s) − 1

2
T3/2(s, t, u) (3)

In order to deal with both processes on the same footing, we will label the particles in
the reaction as α and β. Thus the Mandelstam variables will satisfy: s+ t+u = 2(M2

α +M2
β)

and the threshold will be at sth = (Mα + Mβ)2. As it is well known, whenever s > sth, and
below inelastic thresholds, the unitarity of the S-matrix implies

ImtIJ = σαβ | tIJ |2 (4)
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where σαβ is the two particle phase space. Explicitly:

σαβ(s) =

√
√
√
√

(

1 − (Mα + Mβ)2

s

)(

1 − (Mα − Mβ)2

s

)

(5)

As a consequence of Eq.4, the partial wave can be parametrized as follows:

tIJ(s) =
1

σαβ(s)
eiδIJ (s) sin δIJ(s) (6)

and δIJ(s) is called the IJ phase shift.
We have already mentioned that the ChPT amplitudes are obtained as an expansion in

external momenta and masses. That is

tIJ ≃ t
(0)
IJ + t

(1)
IJ + t

(2)
IJ + ... (7)

where, for the cases we are interested in, t
(0)
IJ is O(p2), t

(1)
IJ is O(p4), etc... In practice, we can

only obtain the few first terms of the series above and therefore the amplitude only satisfies
the unitarity condition perturbatively

Imt
(0)
IJ = 0

Imt
(1)
IJ = σαβt

(0)2
IJ

Im(t
(2)
IJ + t

(1)
IJ ) = σαβ

(

t
(0)2
IJ + 2t

(0)
IJ Ret

(1)
IJ

)

≃ σαβ | t
(0)
IJ + t

(1)
IJ |2 (8)

The O(p2) terms were given by Weinberg [1] and they are called the low energy theorems.
The next order contributions to ππ scattering were given in [2, 3]. The calculation for πK
scattering can be found in [22, 23], although we have found that the formulae in the literature
do not satisfy Eq.8. We will comment on that later. Very recently it has appeared the
complete calculation of the O(p6) contribution to elastic ππ scattering [5]. Although we will
not use it, we will compare some of its results with those of our method.

3 The Inverse Amplitude Method

3.1 Derivation from Dispersion Theory

Let us briefly review the standard derivation [7, 13] of the inverse amplitude method, since
we will use it later in order to understand the applicability of the method.

Any partial wave obtained from a relativistic Quantum Field Theory should present
a characteristic analytic structure in the complex s plane. Indeed, the reaction threshold
becomes a cut in the from sth to +∞. Due to crossing symmetry, there should be another left
cut along the negative axis. If we now apply Cauchy’s Theorem to our complex amplitudes
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we obtain integral equations known as dispersion relations. For instance, a three times
subtracted dispersion relation is

tIJ(s) = C0 + C1s + C2s
2 +

s3

π

∫
∞

(Mα+Mβ)2

ImtIJ(s′)ds′

s′3(s′ − s − iǫ)
+ LC(tIJ) (9)

Where we have not written explicitly the left cut (LC) contribution. The number of sub-
tractions needed depends on how the amplitude behaves at infinity in order to ensure the
vanishing of the contributions coming from closing the integral contour. We have chosen
three subtractions since we are going to use O(p4) ChPT amplitudes which at high s be-
have as s2. But our arguments remain valid for O(p6) amplitudes when using four times
subtracted dispersion relations, etc...

The ChPT partial waves present both cuts and we can calculate both the subtraction
constants C0, C1, C2 and the integrand inside Eq.9 perturbatively

t
(0)
IJ = a0 + a1s

t
(1)
IJ = b0 + b1s + b2s

2 +
s3

π

∫
∞

(Mα+Mβ)2

Imt
(1)
IJ (s′)ds′

s′3(s′ − s − iǫ)
+ LC(t

(1)
IJ ) (10)

Where we have expanded the subtraction constants in terms of M2
α/F 2

β .
The IAM is based on the fact that the function 1/tIJ displays the very same analytic

structure of tIJ , apart from some possible pole contributions. For later convenience, we
will make use of G(s) = t

(0)2
IJ /tIJ . Notice that we have multiplied 1/t by a real function

without singularities; thus we keep the same analytic structure and we can write a very
similar dispersion relation:

G(s) = G0 + G1s + G2s
2 +

s3

π

∫
∞

(Mα+Mβ)2

ImG(s′)ds′

s′3(s′ − s − iǫ)
+ LC(G) + PC (11)

where PC stands for possible pole contributions. The advantage of using G(s) is that, using
Eqs.4 and 8, we can calculate exactly the integral over the right cut (but not on the left,
since those equations only hold on the elastic cut), as follows:

ImG = −t
(0)2
IJ

ImtIJ

| tIJ |2 = −t
(0)2
IJ σ = −Imt

(1)
IJ (12)

Note that we are denote by tIJ the exact amplitude, which is unknown, although we know its
analytic properties. In contrast, the expressions for t

(0)
IJ and t

(1)
IJ , etc... have been calculated

explicitly.
As we did before, we can also expand the Gi subtraction coefficients in powers of M2

α/F 2
β ,

and then rewrite the dispersion relation for G(s), which now reads

t
(0)2
IJ

tIJ
≃ a0 + a1s − b0 − b1s − b2s

2

− s3

π

∫
∞

(Mα+Mβ)2

Imt
(1)
IJ (s′)ds′

s′3(s′ − s − iǫ)
− LC(t

(1)
IJ ) + PC ≃ t

(0)
IJ − t

(1)
IJ (13)
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where we have approximated ImG ≃ −Imt
(1)
IJ on the left cut and we have neglected the pole

contribution. In other words,

tIJ ≃ t
(0)2
IJ

t
(0)
IJ − t

(1)
IJ

(14)

This is the IAM result that we are going to use in the present work. Incidentally, Eq.14 can
be understood as the formal [1, 1] Padé approximant of the ChPT amplitude.

It is important to remark that if we expand again Eq.14 at low energies, we find

tIJ ≃ t
(0)2
IJ

t
(0)
IJ − t

(1)
IJ

≃ t
(0)
IJ + t

(1)
IJ + O(p6) (15)

That is, we recover the ChPT expansion. Hence, up to O(p6) our method and ChPT yield
the same low energy results if the same chiral lagrangian parameters are used.

3.2 The applicability of the Inverse Amplitude Method

Let us review all the approximations made in the previous section, in order to comment how
they will constraint the IAM applicability:

3.2.1 The left cut

In Eq.13 we have replaced the G(s) left cut integral by that of −t
(1)
IJ (s). As we have remarked

in the preceeding discussion, Eqs.4 and 8 are only exact on the right cut. On the left cut we
cannot write the chain of equalities that lead to Eq.12. Nevertheless, if we use the ChPT
result as an approximation:

ImG = −t
(0)2
IJ

ImtIJ

| tIJ |2 ≃ −Imt
(1)
IJ + O(p6) (16)

we get

LC(G) =
∫ 0

−∞

ImGIJ(s′)ds′

s′3(s′ − s − iǫ)
≃ −

∫ 0

−∞

Imt
(1)
IJ (s′)ds′

s′3(s′ − s − iǫ)
= −LC(t

(1)
IJ ) (17)

Notice that, in order to obtain the IJ phase shifts, we are going to calculate tIJ(s) for real
s > 4Mπ. That means that the denominator (s′ − s − iǫ) inside the integrals is never going
to be very small, which somehow will wash out the error on the left cut. But note also that
treating differently the right and left cuts violates crossing symmetry.

Indeed, in [24] it has already been pointed out that the Padé approximants do not
reproduce correctly the subleading logarithms that would appear at next order in the chiral
expansion (O(p6) in this case). Of course they would be obtained if we applied the IAM to
the chiral amplitudes at O(p6), but still the method would not yield the correct logarithms
at O(p8) and so on. At high energies chiral logarithms are not so relevant, but at low
energies they are a very important feature of ChPT and indeed they can give the dominant
contribution in some channels.
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Nevertheless, from Eq.15 we see that at low energies the IAM yields the very same O(p4)
ChPT expansion, including the dominant chiral logarithms. The contribution from the left
cut and subleading logarithms is O(p6). As a consequence, if we try to make a low energy
fit to the data, the parameters that we would obtain with the IAM would not lie very far
from those of ChPT, but they will not be the same. That is the reason why, in the following
sections, we will denote with a hat the parameters obtained from any IAM fit.2

3.2.2 Resonances and the pole contribution

In Eq.13, we have neglected the contributions coming from zeros in the amplitude, that will
appear as poles of the inverse function. There is no way to know a priori whether or not a
partial wave will vanish for a given value of s, although it is known that chiral amplitudes
have zeros below threshold, which are known as Adler zeros. Their position is not known
except for the I = 1, J = 1 channel, where the pole is located at threshold. In our derivation
it is compensated by the same zero in the t

(0)
11 channel. That is not the case of the J = 0

amplitudes and therefore we are neglecting the contribution of their residue. Consequently,
our amplitudes are not valid to obtain Adler zeros and that will affect our results at low
energy (but no more than O(p6)). That is another reason to differentiate the parameters
obtained from our fit from those of the pure chiral expansion2.

3.2.3 Multiplying by t
(0)
IJ

This is apparently a harmless assumption in the above reasoning, although it dramati-
cally affects the results of the IAM. In fact, it can happen that t

(0)
IJ = 0. In the (I, J) =

(0, 0), (1, 1), (2, 0) channels of ππ scattering or in the (3/2, 0), (1/2, 0), (1/2, 1) in πK, this
only occurs for isolated values of s, at or below threshold. In particular, that means that the
IAM amplitudes will have the same zeros as the lowest order Chiral amplitudes. However,
every other partial wave vanishes at O(p2), for any s. As a consequence, the formula in
Eq.14 is no longer valid.

Nevertheless, we can generalize our previous derivation, in order to include those channels
whose leading order is O(p4). We only have to go through the very same steps, although now

we would write a dispersion relation for t
(2)
IJ . But let us remember that the main improvement

of the approach is that we are calculating exactly the integral of ImG(s) over the right cut.
However, for that purpose we need an imaginary part, and by looking at Eq.8 we can see that
t
(0)
IJ = 0 implies that Imt

(1)
IJ = Imt

(2)
IJ = 0. Therefore, unless we have a calculation up to O(p8),

the corresponding imaginary part will vanish. Hence when following the derivation of the
IAM if t

(0)
IJ = 0 the best we can get is plain ChPT again. At present, only O(p6) calculations

are available and we can only expect to obtain a real improvement with our approach in the
six channels listed above. Thus, we will not be able to reproduce the f2(1200) resonance.

2 While we were revising this paper it has appeared a work by M.Boglione and M.R.Pennington [48] where
they propose other schemes with better approximations to the left cut and also include possible contributions
from Adler zeros.
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3.2.4 Elastic unitarity

In order to obtain ImG on the right cut, Eq.12, we have just made use of the elastic unitarity
condition of Eq.4. However, the right cut is composed of many superimposed cuts, each one
corresponding to a different inelastic intermediate channel. Actually, Eq.4 is only true below
the first inelastic threshold, and the real unitarity condition reads

Imtαβ→αβ =
∑

A

σA | tαβ→A |2 Θ(s − sA) (18)

The sum is over all the physically accessible intermediate states A, whose phase space is σαβ .
As far as we are neglecting electromagnetic interactions, the first inelastic channel in ππ

is the four pion intermediate state, at 550 MeV. Similarly, for πK is πKππ, whose threshold
is ≃ 910 MeV. Strictly speaking, only for lower energies the elastic approximation is exact.
Nevertheless, the contribution of these intermediate states is strongly suppressed by the four
particle phase space and we expect the IAM to provide a good approximation.

Unfortunately within the range of energies we are interested in, there are intermediate
channels which are not suppressed by phase space. Indeed, at approximately 985 MeV the
inelastic KK̄ threshold opens up. Its phase space factor is the σαβ in Eq.5, with Mα = Mβ =
MK . Therefore, above the two kaon threshold we have to reconsider the derivation of the
IAM. Let us illustrate with ππ scattering how inelastic effects modify our result.

As the starting point, for s > sKK̄ , we have a new unitarity relation:

Imt = σππ | t |2 +σKK̄ | tK |2 (19)

where we have denoted by t the generic tIJ pion elastic scattering amplitude and by tK the
IJ partial wave of the process ππ → KK̄. Thus we now have, for s > sKK̄, that

ImG = −t
(0)2
IJ

ImtIJ

| tIJ |2 = −t
(0)2
IJ

(

σππ + σKK̄

| tK |2
| t |2

)

(20)

which differs from Eq.12 in the term coming from two kaon intermediate production. If we
follow the very same steps of our previous derivation, we arrive at

t(0)2

tIJ

≃ t(0) − t(1) − s3

π

∫
∞

4M2
π

σKK̄

s′3(s′ − s − iǫ)

(

t(0)2(s′)
| tK(s′) |2
| t(s′) |2 − t

(0)2
K (s′)

)

︸ ︷︷ ︸

∆(s′)

ds′ (21)

Notice that, using ChPT, ∆(s′) ≃ 0 + O(p6). But at these high energies that is not
negligible. Besides, we are interested in the above integral for physical values of s and
therefore the denominator will be almost divergent for some s′. For these reasons we cannot
neglect this integral and then we should not trust the IAM since it could miss some relevant
physical features.

That is indeed the case in pion scattering since, as it can be seen in Table 1, there is
one resonance, the f0(980), whose nature is closely related to the KK̄ threshold. Nowadays,
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the interpretation of that resonance is still controversial: different authors propose different
poles (not always just one) in the vicinity of the KK̄ inelastic cut [26, 27]. As we will see
later, our approach is not able to reproduce any of these poles, consistent with the fact that
the IAM makes use just of elastic unitarity.

At this point we want to remark the importance of understanding why and when the
method does no longer yield the right results. Let us remember that we are also thinking
in possible applications of this unitarization procedures to the electroweak chiral effective
lagrangian, whose reference model is the Standard Model with a heavy Higgs. In such case,
one would expect to see a broad resonance in the scalar channel and we want to have a
unitarization procedure whose predictions we can trust.

3.2.5 O(p4) approximation

Throughout the derivation of the IAM we have been using the chiral amplitudes up to
O(p4). Nevertheless, it is possible to extend the argument to include higher order terms, as
for instance the O(p6) contributions. In that case we would have started from a four times
subtracted dispersion relation for the two-loop calculation. Once more, the integral over the
right cut would be related to the one for G(s) = t

(0)2
IJ /tIJ . Working out the expansion of the

subtraction constants, we would then arrive to

tIJ ≃ t
(0)2
IJ

t
(0)
IJ − t

(1)
IJ + t

(1)2
IJ /t

(0)
IJ − t

(2)
IJ

(22)

Again that is the formal [1,2] Padé approximant, and it satisfies the elastic unitarity condi-
tion.

As we have already mentioned two recent papers have appeared with O(p6) calculations
of ππ scattering within SU(2) ChPT [4, 5]. We have not used these results, since, as we
have just seen, they will not help us to overcome any of the preceeding objections to the
IAM. However it is quite likely that, have we used them, the parameters of the fits that we
will present in the next sections would had been slightly modified.

4 ππ scattering in SU(2) ChPT

The inverse amplitude method was first applied [8, 15] to ππ scattering without the strange
quark. In that case, the massless limit displays spontaneous symmetry breaking from
SU(2)L×SU(2)R to SU(2)L+R, which is nothing but the usual isospin. The O(p4) expression
for ππ scattering was obtained in [2, 28], and it is written in terms of four phenomenological
parameters l̄1, l̄2, l̄3, l̄4 as well as the mass and pion decay constants, Mπ and Fπ. In this
section we will review how the method is able to reproduce the ρ resonance. We will show
some results for recently proposed new parameters in order to test the IAM predictive power,
but we will also present a unitarized fit to the data. As a novelty we will use not only the
J = 0 phase shifts, but also those with J = 2, in order to obtain the best fit with the IAM.
In this new calculation, we have also estimated the error bars of the unitarized parameters.
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4.1 Results using low-energy parameters

Let us now illustrate what happens if we apply the IAM on the ChPT amplitudes using the
chiral parameters obtained from low energy experiments. We want to see quantitatively to
what extent the main physical features are reproduced.

In order to simplify the comparison with previous works, we have chosen Mπ = 139.57
MeV and Fπ = 93.1 MeV. The values of the chiral parameters are not so clear, since they
have considerable error bars. In Table 2 we have listed the different sets of parameters that
we have taken from the literature to obtain Fig.1.

Method l̄1 l̄2 Mρ

ChPT -0.62±0.94 6.28±0.48 No resonances

Inverse -0.62±0.94 6.28±0.48 715 MeV
Amplitude -1.7±1.0 6.1±0.5 675 MeV

Table 2: Sets of parameters and methods used in the text. Those in the first two lines

come from Kl4 decays [29]. Those in the third, from data on Kl4 and ππ together with some

unitarization procedure ref.[30]. Mρ is calculated with the central values.

Let us remark at this point that for the ChPT phase shifts we are using the definition
δ ≃ σ(t(0) + Ret(1)) suggested in [24]. Of course, ChPT is just a low energy approach, but
incidentally, these phase shifts coincide with those obtained from the K-matrix unitarization
defined as

tK =
t(0) + Ret(1)

1 − iσ(t(0) + Ret(1))
(23)

It can be easily verified that tK satisfies elastic unitarity, Eq.4, exactly. Consequently, the
dotted lines in Fig.1 not only give the ChPT predictions, but also the results of the K-matrix
unitarization. We will thus confirm that such a method is not able to reproduce resonances
by itself. They have to be added by hand.

In Fig.1 it can be clearly seen, in the I = 1, J = 1 channel, that the IAM yields a ρ-like
resonance. The value of its mass is obtained from the point where δ = 900 and it lies 10% to
15% away from its real value. In this way, the existence of the ρ resonance can be regarded
as a prediction of the IAM with ChPT and the parameters obtained from some low energy
data.

It is also evident that the fit of the I = 2, J = 0 channel is correct up to much higher
energies. In Table 2 we have also included the values of Mρ corresponding to each choice of
parameters. For all the cases we have set l̄3 = 2.9 and l̄4 = 4.3 following reference [2].

The only feature of ππ scattering that is evidently missing from the unitarized results is
the f0(980) resonance in the I = 0, J = 0 channel. In the previous section we saw that this
fact is connected with the failure of the whole approach to reproduce the kaon inelastic cut.
But let us first obtain a better fit to the data.
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Figure 1.- Phase shifts for ππ → ππ. The dotted curve is plain ChPT with the l̄i in the first

line of Table 2. The other two curves are both the result of the IAM: the dashed one has been

calculated again with the same parameters whereas the continuous one corresponds to the l̄i in

the third line of Table 2. The data come from: [31] (△), [32] (♦, 2), [33] (×),[34] (◦), [35] (�),

[36] (⋆) and [37] (•). The results with SU(3) ChPT would have been exactly superimposed on

these curves. The straight line stands at δ = 900.

4.2 Unitarized fit

Now that we have an amplitude that describes the right cut, while keeping at the same time
the correct polynomial form from ChPT, it seems natural to use Mρ [8, 15] to fit the data.
Note that fixing the correct mass does not imply a good fit. For instance, we could get a
wrong width. In order to differentiate the parameters thus obtained from those coming from
plain ChPT we will call them l̂1, l̂2.

The (1,1) channel is almost only sensible to l̄1− l̄2. With l̂1− l̂2 = −5.95±0.02 we get the
Mρ listed in Table 1 and in Fig. 2 it can be seen that the results are remarkably successful.
Later we will show that we also get the right width.

Once that difference is fixed, we just have to determine one parameter, say l̂2. In previous
studies [8, 15] the unitarized fit to the other phase shifts was used in order to estimate the
values of l̂1 and l̂2. But, as we commented above, the data in the (0,0) channel is not as
good as that of (1,1). The same happens for the (2,0) channel, where the curves are not very
sensible to small variations in the l̂i parameters. Therefore, in the present work, we have also
used the J = 2 channels (mainly that with I = 0) to further constrain the parameter range.

Let us remember now that in these channels t
(0)
I2 = 0 and, as we have already discussed in

Section 2, the IAM leads again to plain ChPT. That is why we will only use for them data
up to ≃ 600MeV, although in other channels we are using data at higher energies.
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Thus, the values given in Table 3 are just a conservative estimate of the range where we
obtain a reasonable fit in the (I, J) = (0, 0), (2, 0), (0, 2) and (2, 2) channels, when Mρ fixed
to its actual value. The results are shown in Fig.2, where the continuous line corresponds to
the central l̂i values and the shaded area to their uncertainties. Notice that the shaded area
has always been obtained by varying l̂2 within its estimated error.

In Fig.2 it can be seen how it is not possible to fit the f0(980) resonance with SU(2)
ChPT and the IAM. It is clear that, even though the actual value of the δ00 phase shift may
not lie very far from the unitarized prediction, the qualitative behavior of the curves in this
channel is not correct above 800MeV.

With the l̂i fit we can obtain the total Breit-Wigner width of the ρ resonance from:

Γρ =
M2

ρ − s

Mρ
tanδ11(s) (24)

Indeed we have computed it for different values of s around M2
ρ . The result is given in

Table.3 and it is quite close to the experimental result (see Table 1) although slightly high.
We will see that it is possible to obtain the right value when using SU(3) ChPT.

As we have already commented, this result is not at all trivial, since fitting the right mass
does not ensure a correct description of the resonance. Therefore, even though we are now
using the Mρ experimental value, the Γρ width is again a prediction of the IAM. In contrast,
in a unitarization scheme where one introduces the resonances by hand, one has to give both
the masses and the widths.

Method l̂1 l̂2 Mρ (input) Γρ

Inverse
Amplitude

-0.5 ± 0.6 5.4± 0.6 768.8± 1.1 MeV 155.6±1.8 MeV

Table 3: Parameters and results of the one-loop IAM when Mρ is fixed to its actual value.

5 SU(3) Chiral Perturbation Theory

The extension of the ChPT approach to include the strange quark was done, once more, by
Gasser and Leutwyler [3]. In this case there are eight Goldstone bosons, which are identified
with the three pions, the four kaons and the eta. In principle it is possible to calculate the
amplitudes of any process involving any combination of these particles. But the thresholds
for these reactions are much higher than in pion scattering, which in practice restricts severely
the effectiveness of the approach.

Nevertheless, the lowest two particle threshold apart from ππ scattering is that of πK
elastic scattering at 630MeV, which is still within the applicability range of ChPT. The
calculation of this amplitude to O(p4) was performed by Bernard, Kaiser and Meißner [22, 23]
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Figure 2.- Pion elastic scattering phase shifts δIJ obtained from the IAM fit to the correct

Mρ. The shaded areas cover the error bars of the fitted parameters with the constraint l̂1− l̂2 =

−5.95 ± 0.02. The dotted straight lines stand at δ = 900. Remember that the J = 2 partial

waves have to be calculated as in plain ChPT. Indeed, the dashed lines in those channels

correspond to plain ChPT with the parameters in the first row of Table 2. The symbols for

the experimental data are the same as in Fig.1. The corresponding curves within SU(3) ChPT

would almost superimpose.
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who also gave the O(p4) result for ππ within SU(3) ChPT. In the literature, these formulae
have sometimes appeared with some minor errata which have been corrected in the DAΦNE
Physics Handbook [25]. However, even those formulae do not satisfy perturbative unitarity
(see Appendix). Following the work in [22] we have rederived an expression which does satisfy
that requirement, and we have included it in the Appendix, together with a discussion on
how it is obtained and its unitarity properties.

In the SU(3) case there are more phenomenological parameters that we have set to:

MK = 493.65MeV , Mη = 548.8MeV , FK = 1.22Fπ , Fη = 1.3Fπ (25)

There are also twelve one-loop parameters, denoted by Lr
i (µ). However only Lr

1, L
r
2, L3, L

r
4, L

r
5, L

r
6

and Lr
8 appear in πK in scattering, whereas in pion scattering only the following combina-

tions are present:

2Lr
1 + L3 Lr

2 (26)

2Lr
4 + Lr

5 2Lr
6 + Lr

8 (27)

Again, and in order to simplify the comparison with previous works, we have fixed the
following values [3]:

Lr
4(Mη) = 0 Lr

5(Mη) = 0.0022 Lr
6(Mη) = 0 Lr

8(Mη) = 0.0011 (28)

A precise value of these parameters is not very important since they are related to the
different masses and decay constants that we had already fixed. Hence, in practice, the only
relevant parameters for ππ and πK scattering in SU(3) are Lr

1, L
r
2 and L3.

The IAM was first applied to SU(3) ChPT by the authors in [13], were we showed that it
reproduces not only the ρ(770) resonance but also the K∗(892). Our aim in this section is first
to study the predictive power of the method, whether it can accommodate further resonant
states, or why it cannot. Then we will present a simultaneous fit to ππ and πK scattering to
the ρ and K∗ masses. The new features of this analysis is that it uses the corrected ChPT
expressions for πK scattering which now satisfy perturbative unitarity (see the Appendix)
and the fact that we also use the data on the J = 2 ππ scattering channels. We will also
estimate the error bars on the best fit that will be used to obtain numerical values for some
interesting phenomenological quantities. This fit will also allow us, in section 6, to perform
a numerical study of the analytic structure of the IAM amplitudes in the complex s plane.

5.1 Results using low energy parameters

Let us then start with the IAM using parameters obtained from low energy data. In Table 4
we list different choices of parameters and methods together with their results for the ρ and
K∗ masses. As in the case of SU(2) ChPT the IAM is able to predict from low energy data
the existence of both resonant states. Remarkably, the masses thus obtained lie again 10%
to 15% away from their actual values.
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Figure 3.- Phase shifts for elastic πK scattering. The dotted curve is plain ChPT with the Li

parameters in the first line of Table 4. The other two curves are both obtained from the IAM:

the dashed one again with the same parameters and the continuous one with those in the third

line of Table 4. The experimental data come from:[38] (•), [39] (⋆), [40] (◦), [41] (♦), [42] (2)

and [43] (△). The straight dotted line stands at δ = 900.

In Fig.3 we show the result of applying the IAM to πK scattering, with the parameters
given in Table 4. In contrast with plain O(p4) ChPT (or the K-matrix unitarization method,
since they yield the same phase shifts), it is evident that the IAM not only accommodates
the K∗ resonance, but it also reproduces the (3/2, 0) channel.

We do not display the results for ππ scattering in SU(3) because they will almost su-
perimpose with those in Fig.1. Indeed, the l̄i parameters in lines 2 and 3 of Table 2 were
obtained, respectively, from the Lr

1, L
r
2, L3 in lines 2 and 3 of Table 4 [29, 30], by means of

l̄1 = 96π2
(

4Lr
1(Mη) + 2L3 −

νK

24
− νπ

3

)

l̄2 = 48π2
(

4Lr
2(Mη) −

νK

12
− 2νπ

3

)

να =
1

32π2
log

(

M2
α

M2
η

)

; α = π, K (29)

As a matter of fact, we have calculated independently the ππ elastic scattering in SU(2)
and SU(3). Using the above equations to relate the parameters in both cases, and below
kaon threshold, we have obtained the same results up to numerical differences (≃1%), which
would be unobservable in the figures. That is a nice check of our programs. Therefore, Fig.1
is also the result for ππ scattering in the SU(3) formalism, but now with the parameters in
Table 4.
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Method Lr
1(Mη) · 103 Lr

2(Mη) · 103 L3 · 103 Mρ MK∗

ChPT 0.65±0.28 1.89±0.26 -3.06±0.92 - -

Inverse 0.65±0.28 1.89±0.26 -3.06±0.92 717 MeV 847 MeV
Amplitude 0.6±0.3 1.75±0.3 -3.5±1.1 680 MeV 804 MeV

Table 4: Different sets of parameters and methods used in the text. Those of the first two lines

come from Kl4 decays [29]. Those of the third line come from data on Kl4 and ππ together

with some unitarization procedure (for details see ref.[30]). The quoted values of Mρ and MK∗

are calculated with the central values.

5.2 Unitarized fit

Again we have an expression for the amplitude that behaves correctly with respect to uni-
tarity and that presents the right form in the low energy limit. Therefore, we can try to
use the actual ρ(770) and K∗(892) masses in order to fit the ππ and πK phase shifts. We
remark once more that nothing ensures that fitting the right masses will give us the right
description, since, among other things, the widths of the resonances could be wrong.

When dealing with the SU(3) chiral lagrangian we have more parameters, and the way
they appear in the amplitudes is more complicated. Let us first start with the ππ scattering
partial waves in SU(3). As we have commented in section 3.2.1, in order to avoid confusions
with the ChPT low-energy parameters, we will denote the parameters of our fit by L̂r

i .
The (1,1) channel only depends on 2Lr

1 +L3 −Lr
2, and will be fixed with Mρ. In so doing

we get
2L̂r

1 + L̂3 − L̂r
2 = (−3.11 ± 0.01)10−3 (30)

As a consistency check we see that it is within a 1% of −3.14 10−3 which is obtained from
the l̂i parameters of the SU(2) case, with the help of Eq.29.

Once again we use the channels (I, J) = (0, 0), (2, 0), (0, 2) and (2, 2) to determine the
best L̂r

2 value, which indeed is the same that we would have obtained from the l̂2 SU(2)
parameter by means of Eq.29. It can be found in Table 5. Hence, the best SU(3) fit of the
ππ phase shifts, yields almost the same results as those obtained with SU(2) and the very
same Fig.2 remains valid for SU(3). Nevertheless, when computing the Γρ within the SU(3)
formalism, we obtain a much better value than in SU(2), which was about 5 MeV too high.
It is also listed in Table 5.

Finally we will use L̂3 to fix the correct K∗(892) mass. However, the K∗(892) has an
added subtlety, namely, that the mass splitting between different charge states is of the order
of 5 MeV. This is a small isospin breaking effect that we have not included in our approach.
Therefore, we have used an average mass MK∗ = 894.0 ± 2.5 MeV with an error bar that
includes the mass of any K∗(892) state, no matter what its charge may be. That uncertainty
has also been taken into account in the L̂r

i error estimates.
Once we have L̂3, we use L̂r

2 and Eq.30 to obtain L̂r
1. The parameters of this fit have
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Method L̂r
1(Mη) · 103 L̂r

2(Mη) · 103 L̂3 · 103 Γρ ΓK∗

Inverse
Amplitude

0.41±0.20 1.48 ± 0.33 -2.44± 0.21 149.9± 1.2 MeV 41.2 ± 1.9 MeV

Table 5: Parameters and results of the SU(3) IAM when Mρ = 768.8 ± 1.1MeV and MK∗ =

894.00 ± 2.5 MeV are fixed to their actual values. Notice that for K∗(892) we have chosen an

average mass between its different charge states.

been collected in Table 5, together with Γρ and ΓK∗, which can be considered as predictions
of the approach. Notice, however, that in this case the width of the K∗(892) resonance lies
20% away from its actual value, which nevertheless is a reasonably good result in view of
the whole fit in that channel.

Concerning the L̂i parameters, they are compatible with those in Table 4, which were
obtained from low energy data. Even more, they are also consistent with other parameters
obtained from the IAM applied to the form factors of the K → ππlν decays [14], which are
very well know experimentally:

L̂r
1(Mη) = (0.74 ± 0.14)10−3 L̂r

2(Mη) = (1.07 ± 0.18)10−3 L̂3(Mη) = (−2.45 ± 0.52)10−3

(31)
(notice that in that reference they are using FK = Fπ, so that the parameters do necessarily
differ).

Nevertheless, it would not make any sense to try to reduce the error bars of these param-
eters. We consider that the approach that we have been following here can only be consistent
within a few percent error level. In order to have a better accuracy it would be necessary
to take into account higher order ChPT corrections, isospin-breaking effects and the whole
approach should be modified following the comments that we made in previous sections.

In Fig.4 we show the results of the SU(3) IAM fit to the resonance masses, in terms of
elastic scattering phase shifts, which we think deserve some comments:

• First notice that we are not showing the curves for ππ scattering because they are
exactly those in Fig.2. The differences only appear above the two kaon threshold,
since in the SU(3) formulae we are also considering internal loops of kaons and etas.

• In the πK → πK case we can extend the graphs up to 1100 MeV, or even more. The
reason is that the first two body inelastic threshold is Kη production at 1040 MeV and,
in contrast to the ππ case, there is no nearby resonance. Indeed, the next resonant
state in πK elastic scattering is K∗

0 (1430), very high to affect dramatically our results
at 1100 MeV, but also to be correctly reproduced by the IAM method. Nevertheless,
the existence of the Kη threshold can be noticed in the I = 1/2, J = 0 channel, as a
small bump in the curves at precisely 1040 MeV.
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Figure 4.- πK elastic scattering phase shifts δIJ obtained from the IAM fit to the correct Mρ

and MK∗ . The shaded areas cover the error bars of the fitted parameters with the constraint

2L̂r
1 + L̂3 − L̂r

2 = (−3.11± 0.01)10−3. The dotted straight line stands at δ = 900. The symbols

for the experimental data are the same as in Fig.3.

• The shaded area in the K∗(892) channel is not only due to the averaged mass for
K∗(892) with 2.5MeV error, but also to the fact that we have to determine several
parameters to get the right mass, in contrast with the ρ(770) case, when we only had
to fix one.

We have explicitly checked that our ChPT amplitudes satisfy perturbative unitarity.
As it is explained in the Appendix, previous calculations [23, 13], including ours, did not
respect this condition, although by a very small amount. That is why the values of the best
parameters for this fit are slightly different from those of our previous work [13].

Phenomenological parameters

Once we have a good parametrization of ππ and πK elastic amplitudes, we can use it to
obtain the values of some relevant phenomenological parameters. First we can calculate the
scattering lengths, which determine the strength of the interactions at low energy. Despite
our IAM fit makes use of high energy data, we expect that it will reproduce the low energy
behavior since in the low energy limit it reduces to the chiral expansion, which at O(p4)
already yields quite good values (see Tables 6 and 7). However, as far as the IAM is non-
perturbative we are also taking into account higher order effects, that will modify the results.
Indeed, some of these lengths have already been calculated with the IAM and it yields slightly
better results than plain ChPT [14]. We have made again the calculation with our fit, but
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as far as we have an estimate of the error bars in the L̂i parameters, we will also give the
error estimates coming only from the uncertainties in L̂i (mostly dominated by that of L̂2).

Before giving the results, it is convenient to recall that the scattering lengths have two
different normalizations. Namely:

RetIJ(s) = q2J
(

aI
J + bI

Jq2 + O(q4)
)

(32)

for ππ scattering, where q is the C.M. momentum q2 = s/4 − M2
π , and

RetIJ(s) =

√
s

2
q2J

(

aI
J + bI

Jq2 + O(q4)
)

(33)

for πK scattering, where now q2 = [s − (MK + Mπ)2][s − (MK − Mπ)2]/4s.
The predictions of our fit for the ππ and πK scattering lengths are given in Tables 6 and

7 (in Mπ units). Notice that all the values are compatible with the experimental data, and
in general they only differ very slightly from the O(p4) ChPT results, usually in the right
direction toward the central value. However, the experimental error bars are still too big to
arrive at any conclusion. Also the error bars in the IAM have to be interpreted cautiously,
since they are obtained only from the uncertainties in the L̂i parameters.

As we have already commented, very recently there has appeared a two loop calculation
of ππ scattering within SU(2) ChPT. It estimates a0

0 ∼ 0.217 or 0.215 and a0
0−a2

0 ∼ 0.258 or
0.256, which are precisely the values obtained with our IAM fit. This fact gives support to
the idea that the IAM somehow takes into account higher order terms even at low energies.

Notice that we do not compare with the two-loop calculation of the scattering lengths and
slopes in [4] because they have used them as an input in a χ2-fit to determine their additional
α and β parameters. Therefore, their values are almost exactly those of the experimental
data. However, as far as there is no data for the b1

1 ππ slope parameter, their value can be
regarded as a prediction. They give b1

1 = (0.54 ± 0.15)10−2, which is consistent with our
result and with b1

1 = (0.6 ± 0.4)10−2, that was obtained from sum rules in [44].
We have also calculated the phase of the ǫ′ parameter, which measures direct CP violation

in K → ππ decays [46]. It is related to the s-wave phase shifts as follows:

φ(ǫ′) = 90o − (δ0
0 − δ2

0)s=M2

K0

(34)

Our result is:
φ(ǫ′) = (42−7

+5)
o (35)

very close to φ(ǫ′) = (45 ± 6)o which is obtained in plain ChPT [47]. In contrast with the
case of the scattering lengths, the value of this angle is not used as an input in [4] and is
therefore a prediction of their best fit. The value they quote is φ(ǫ′) = (43.5 ± 2 ± 6)o.

Finally, in Fig.5 we show the phase difference δ00 − δ11, compared with the hitherto
available experimental data [36]. The difference between the IAM and plain ChPT at high
energies is due to the presence of the ρ resonance. Nevertheless, there are also some differ-
ences at low energies, since the dispersive approach is somehow taking into account higher
order contributions.
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aI
J ChPT IAM fit Experiment

a0
0 0.201 0.216 ± 0.008 0.26 ± 0.05

b0
0 0.26 0.289 ± 0.025 0.25 ± 0.03

a2
0 -0.041 -0.0417 ± 0.0014 -0.028 ± 0.012

b2
0 -0.070 -0.075 ± 0.003 -0.082 ± 0.008

a1
1 3.6 · 10−2 (3.744 ± 0.002)·10−2 (3.8 ± 0.2)·10−2

b1
1 0.43·10−2 (0.515 ± 0.001)·10−2 -

a0
2 20 · 10−4 (17.1 ± 3.5)·10−4 (17 ± 3)·10−4

a2
2 3.5 · 10−4 (2.8 ± 1.5)·10−4 (1.3 ± 3.1)·10−4

Table 6: ππ scattering lengths. The one-loop ChPT results are taken from [29]. The experi-

mental data come from [45]. The errors in the IAM fit come only from the uncertainties in the

parameters . They do not include other theoretical uncertainties.

aI
J ChPT IAM fit Experiment

a
3/2
0 -0.043 -0.049 ± 0.004 -0.13...-0.05

b
3/2
0 - -0.026 ± 0.003 -

a
1/2
0 0.148 0.155 ± 0.012 0.13...0.24

b
1/2
0 - 0.087 ± 0.016 -

a
1/2
1 0.012 0.0146 ± 0.0012 0.017...0.018

Table 7: πK scattering lengths. Note that the ChPT results have been obtained using the

corrected formulae in the Appendix. The experimental data come from [22]
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Figure 5.- δ00−δ11 phase shift difference from the IAM fit (solid line) and plain ChPT (dashed

line). The shaded area covers the uncertainty in the L̂i parameters and the data come from

[36].

6 The IAM in the complex s plane

The main objection to unitarization procedures is the apparent arbitrariness in their pre-
dictions, which may differ from one another. In most cases, these methods are nothing but
a small modification of the amplitudes so that they can satisfy the unitarity constraint in
Eq.4, while keeping at the same time the good low energy behavior. But that constraint
is not enough to determine the amplitude completely. Thus there are as many unitariza-
tion techniques as algebraic tricks to implement such a constraint exactly or to get a better
approximation.

However, we have already seen in Section 3.1 that, below any other inelastic threshold,
the inverse amplitude method can be derived directly from the analytic structure of the
general two body elastic scattering amplitude. Our purpose in this section is to show that,
apart from satisfying elastic unitarity, it provides the correct analytic structure required
from relativistic Quantum Field Theory. Such an structure is not trivial at all and cannot
be reproduced by other unitarization procedures. Both the left and right unitarity cuts are
already present in plain ChPT, therefore, we will mainly focus on the poles in the second
Riemann sheet.

In the previous section we used the most naive criteria to identify resonances, i.e., that
the phase crosses the δ = 900 value. However, that is only true for the simplest cases. The
rigorous characterization of resonances is made in terms of poles in the second Riemann
sheet of the amplitudes in the s complex plane. Indeed, when a resonance is produced by

22



just one of these poles, both its mass and width are related to the pole position by

√
spole ≃ MR + i

ΓR

2
(36)

provided the width is small enough.
In this work we have extended to the s complex plane both the ππ and the πK elastic

scattering IAM amplitudes obtained in the previous section. Notice that the cuts in ChPT
come from logarithmic functions, so that we have infinite sheets in the complex plane. How-
ever, only two of them correspond to the first and second Riemann sheets. Once we have
identified these sheets we can check whether the resonances that we found in previous sec-
tions are produced by a pole in the second Riemann sheet and thus whether they have a real
sound basis.

We will first analyze the ππ → ππ process. In Figure 6 we represent the imaginary part
of the amplitude in the complex s plane for the three channels (I, J) = (0, 0), (1, 1) and
(2, 0). Notice that when we say complex s plane, we mean that we have parametrized s as
s = (E + iC)2, where E is the CM energy and is represented in the real axis whereas C
provides the complex part. On the left column we have displayed the results in the first
Riemann sheet, whereas in the right column we have continued through the cut to the lower
half of the second Riemann sheet. In all cases it can be clearly noticed the existence of a
cut on the real axis on the first Riemann sheet. As we had commented before, a right cut is
not anything completely new, since it is already present in one-loop ChPT, although in that
case, the values that the amplitudes take on it are different. In contrast, the most striking
new feature in the IAM amplitudes is the appearance of poles in the second Riemann sheet
and how they determine the amplitude shape for the physical values of s.

Indeed, we have found two poles with Ims < 0 in the second Riemann sheet, one in the
(0, 0) partial wave and another one in (1, 1). Let us start with the second, which clearly
corresponds to the ρ resonance. The position of this pole can be obtained from the contour
plots in Fig.7, and it is found at around ER ∼ 760 − i75. Using Eq.36 we see that it is in
a good agreement with the ρ(770) mass and width parameters given in Table 1. Therefore,
we can conclude that this pole is completely consistent with the ρ(770) resonance.

The other pole that can be seen in ππ → ππ is on the (0, 0) channel. Using the parameters
of the best SU(3) IAM fit of the previous section, we find that it is located at ER ∼ 440−i245.
It is not responsible for the appearance of any resonance, since it is very far away from the
real axis. However, from purely phenomenological fits to pion scattering data it had already
been pointed out the existence of such a pole around ER ∼ 408 − i342 MeV [27]. This pole
is responsible for the strong interaction in that dominates the at low energy the two pion
(0, 0) channel. We can now see that even in the channel where there is not an apparent
improvement, the IAM yields the correct analytic structure.

Much as it happened in previous sections, the method is not able to reproduce the f0(980)
resonance. As we already commented, the interpretation in terms of poles of this resonance
is still controversial. Following the same steps as before, we have also identified the four
Riemann sheets that now appear due to the superposition of two cuts. Indeed, we have even

23



Figure 6.- Imaginary parts of the ππ → ππ amplitudes in the complex s plane. The first

row is the (I, J) = (0, 0) channel, the second is (1, 1) and the bottom is (2, 0). The left plots

correspond to the first Riemann sheet, and those on the right, to the second.
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Figure 7.- Contour plots of the second Riemann sheets for different SU(3) ChPT unitarized

amplitudes. From left to right they correspond to the (1, 1) and (0, 0) ππ scattering channels

and the (1/2, 1) πK → πK channel.

implemented the IAM derived with the inelastic unitarity condition in section 3.2.4. We
have not found any pole that could hint at the existence of such a resonance.

As we have already explained, we should not expect to find anything since the approach
is not able to reproduce properly the two kaon unitarity cut and consequently neither its
associated sheet structure.

Let us now address to the πK elastic scattering case. Again, in Fig.8 we have displayed
the imaginary part of the amplitudes for the (3/2, 0), (1/2, 0) and (1/2, 1). Those pictures
on the left represent the first Riemann sheet and those on the right, the second. Once more
the existence of a unitarity cut is clear, but there is also the appearance of a pole in the
appropriate channel. In particular, using the third contour plot of Fig.7, we have found a
pole in ER ∼ 890 − i20 MeV, which using Eq.36 yields again the mass and width for the
K∗(892) resonance that we gave in Table 5.

7 Conclusions

In this work we have shown how the IAM provides a consistent technique to accommodate
resonances. Indeed, based on its derivation from Dispersion Theory, we have made a system-
atic analysis of its applicability, which is mainly limited by the existence of two body inelastic
thresholds and by the fact that the tree level approximation vanishes in some channels.

We have found that it is able to predict the most relevant features of strong elastic
scattering, once the chiral parameters are determined from low energy data. Quantitatively,
the errors are hard to estimate, but we have found in all cases that the mass of the predicted
resonances fall within approximately 15% of their actual values. We think this fact gives
a sound basis for its application in order to obtain at least a qualitative description of
resonances in the strongly interacting symmetry breaking sector.

Moreover, once we force the IAM results to fit the actual resonance mass values, we get a
remarkably good fit which is able to reproduce the experimental data up to the next relevant

25



Figure 8.- Imaginary parts of the πK → πK IAM amplitudes in the complex s plane. The first

row is the (I, J) = (3/2, 0) channel, the second is (1/2, 0) and the bottom is (1/2, 1). Again,

the left plots correspond to the first Riemann sheet, and those on the right, to the second.
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two body inelastic threshold. Following that procedure, we have given the unitarized SU(2)
ChPT fit to ππ → ππ as well as that of SU(3) to ππ and πK elastic scattering. For the
first time we have estimated the values of the unitarized chiral parameters together with
their error bars. These values do not lie very far from those obtained without the IAM,
and therefore do not spoil the low energy expansion, as can be noticed from the scattering
lengths that we have given.

With this fit, we have calculated several low-energy phenomenological parameters, like the
scattering lengths. Our values differ from those obtained at O(p4) due to the unitarization.
However we expect that they include other corrections due to unitarity and resonant effects.

We consider that it would not make any sense to try to reduce the error bars in the
unitarized parameters within this approach. One has to keep in mind that we have neglected
higher order ChPT corrections, isospin-breaking contributions, and that we have used high
energy data which is very sensible to such effects. It is quite likely that, in order to obtain
results consistent to a higher degree of accuracy, the IAM in the simple version that has
been used here, will not be enough.

Finally we have also shown how the IAM yields the proper analytic structure in the
complex s plane, in contrast with other unitarization techniques. Indeed, we have found
that the apparent resonant behavior that is observed on phase shifts, is produced by the
corresponding poles in the second Riemann sheet, meeting the strict requirements imposed
by general relativistic Quantum Field Theory.

Therefore, we think that the IAM and unitarization by means of dispersion theory is
the most natural and economic way to extend the applicability of Chiral Lagrangians. We
have seen however, that its main limitations come from the existence of two body inelastic
thresholds. Nevertheless, work is still in progress in the subject, the IAM has been recently
applied to other processes and higher order ChPT calculations will be soon available. As far
as some other physically relevant features do not lie very far from the present applicability
limits, it seems very likely that they can be reproduced in the near future.
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A Elastic scattering amplitudes in SU(3) ChPT and

Unitarity

The first calculation of elastic πK scattering was later performed in [22]. These amplitudes
were given in terms of physical as well as lowest order masses and decay constants, which
are usually denoted by MP , FP and M0

P , F 0, respectively (P being either π, K or η). Of
course, the only measurable parameters are the first, and when comparing with experimental
observations, one has to eliminate those from lowest order in terms of the physical constants.

Indeed, it is possible to find [3] the relation between M0
π and Mπ as well as that between

M0
K and MK . Unfortunately, at lowest order there is only one F 0, which is related both to

Fπ and FK . Hence, whenever one finds F 0 in an expression there are two choices: either
relate it to Fπ or to FK . The difference between the two choices will be one order higher in
the chiral expansion. For instance, if one has an O(p2) expression with F 2

0 , in principle one
can substitute it by F 2

π , F 2
K or Fπ · FK . All these choices are equally acceptable. When one

is working only with pions, the natural choice is the one that leaves all the expressions in
terms of Fπ. When one is dealing both with pions and kaons, it is not so obvious. However,
once one choice is done for the O(p2) term, we have to keep it for the O(p4) contribution,
otherwise one would violate perturbative unitarity, Eq.4.

Surprisingly, in the amplitude in the literature [23], which is the one we had also followed
in our previous work [13], the choice for the O(p2) term is different from that of the O(p4)
contribution that yields the imaginary part. Indeed, the O(p2) term is written just in terms of
Fπ whereas TU is written in terms of Fπ and FK . As a consequence, there is a F 2

K/F 2
π factor

of difference between Imt(1) and σπK |t(0)|2. Numerically that amounts to a (1.22)2 ≃ 1.5
factor.

Thus, we have rederived from the original work [22] the amplitudes in terms of physical
quantities, (also correcting some small errata) so that they satisfy perturbative unitarity.
We have chosen to write the formulae symmetrically with respect to Fπ and FK . But the
other choices are equally acceptable. The result is:

T 3/2(s, t, u) =
M2

π + M2
K − s

2FπFK
+ T T

4 (s, t, u) + T P
4 (s, t, u) + TU

4 (s, t, u) + O(s3) (37)

T T
4 (s, t, u) =

1

16FπFK

(M2
π − M2

K)(3µπ − 2µK + µη)

T P
4 (s, t, u) =

2

F 2
πF 2

K

{

4Lr
1(t − 2M2

π)(t − 2M2
K) + 2Lr

2

[

(s − M2
π − M2

K)2 + (u − M2
π − M2

K)2
]

+ Lr
3

[

(u − M2
π − M2

K)2 + (t − 2M2
π)(t − 2M2

K)
]

+ 4Lr
4

[

t(M2
π + M2

K) − 4M2
πM2

K

]

+ 2Lr
5M

2
π(M2

π − M2
K − s) + 8(2Lr

6 + Lr
8)M

2
πM2

K

}

TU
4 (s, t, u) =

1

4F 2
πF 2

K

{
3

2

[

(s − t)
(

LπK(u) + LKη(u) − u
(

M r
πK(u) + M r

Kη(u)
))

+
(

M2
K − M2

π)2(M r
πK(u) + M r

Kη(u)
)]

+ t(u − s)[2M r
ππ(t) + M r

KK(t)]
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+
1

2
(M2

K − M2
π)[KπK(u)(5u − 2M2

K − 2M2
π) + KKη(u)(3u − 2M2

K − 2M2
π)]

+
1

8
Jr

πK(u)
[

11u2 − 12u(M2
K + M2

π) + 4(M2
K + M2

π)2] + +Jr
πK(s)(s − M2

K − M2
π

)2

+
3

8
Jr

Kη(u)
(

u − 3

2
(M2

K + M2
π)
)2

+
1

2
Jr

ππ(t)t(2t − M2
π) +

3

4
Jr

KK(t)t2

+
1

2
Jr

ηη(t)M
2
π

(

t − 8

9
M2

K

)}

The functions MPQ, LPQ, KPQ, JPQ, µP , with P, Q = π, K, η, can be found in [3] although
they should be written in terms of physical quantities.

We have verified analytically that this amplitude satisfies the perturbative unitarity con-
straint. Moreover, we have used that constraint as a check of our programs.

We want to remark again that this way to write the πK amplitude is one of several
possible choices, since we could have chosen to write everything just in terms of Fπ, for
example. The important point is to keep the same choice both for the O(p2) and the O(p4).

For completeness, we will also give the SU(3) formulae used in this work for ππ scattering,
because they have also appeared with some minor errata in the literature:

A(s, t, u) =
(s − M2

π)

F 2
π

+ B(s, t, u) + C(s, t, u) + O(s3) (38)

B(s, t, u) =
1

F 4
π

{

M4
π

18
Jr

ηη(s) +
1

2
(s2 − M4

π)Jr
ππ(s) +

1

8
s2Jr

KK(s)

+
1

4
(t − 2M2

π)2Jr
ππ(t) + t(s − u)

[

M r
ππ(t) +

1

2
M r

KK(t)
]

+ (t ↔ u)
}

C(s, t, u) =
4

F 4
π

{

(2Lr
1 + L3)(s − 2M2

π)2 + Lr
2[(t − 2M2

π)2 + (u − 2M2
π)2]+

+ (4Lr
4 + 2Lr

5)M
2
π(s − 2M2

π) + (8Lr
6 + 4Lr

8)M
4
π

}

References

[1] S. Weinberg, Physica 96A (1979) 327.

[2] J. Gasser and H. Leutwyler, Ann. of Phys. 158 (1984) 142.

[3] J. Gasser and H. Leutwyler, Nucl. Phys. B250 (1985) 465 and 517.

[4] M.Knecht, B.Moussallam, J.Stern and N.H.Fuchs, Nucl. Phys. B457(1995) 513.

[5] J.Bijnens, G.Colangelo, G.Ecker, J.Gasser and M.E.Sainio, NORDITA-95/77 N,P; BUTP-95-
34;UWThPh-1995-34,HU-TFT-95-64, hep-ph/9511397.

[6] A.M.Bernstein and B.R.Holstein (eds.), Chiral Dynamics: Theory and Experiment, Proceedings
of the Workshop held at MIT, Cambridge,MA, USA, July 1994. Springer, Berlin and Heidelberg,
1995.

29

http://arXiv.org/abs/hep-ph/9511397


[7] Tran N. Truong, Phys. Rev. Lett. 61 (1988)2526, ibid D67 (1991) 2260.

[8] A. Dobado, M.J. Herrero and T.N. Truong, Phys. Lett. B235 (1990) 134.

[9] G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nuc. Phys. B321 (1989)311.
G. Ecker, J. Gasser, H. Leutwyler, A. Pich and E. de Rafael, Phys. Lett. B223 (1989)425.
J.F. Donoghue, C. Ramirez and G. Valencia, Phys. Rev. D39(1989)1947.
V. Bernard, N. Kaiser and U.G. Meißner, Nuc. Phys. B364 (1991)283.

[10] M.Harada, F.Sannino and J.Schechter. SU-4240-642, hep-ph/9511335.

[11] S.N. Gupta: Quantum Electrodynamics, p. 191. New York. Gordon and Breach (1981).

[12] C.J.C. Im, Phys. Lett. B281 (1992) 357;
A. Dobado and J.R. Peláez, Phys. Lett. B286 (1992) 136.
A. Dobado and J.Morales, Phys. Lett. B365 (1996) 264.; Phys. Rev. D52(1995)2878.
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